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Two infinite-range directed percolation models, equivalent also to epidemic 
models, are considered for a finite population (finite number of sites) N at each 
"time" (directed axis) step. The general features of the transfer matrix spectrum 
(evolution operator spectrum for the epidemic) are studied numerically, and 
compared with analytical predictions in the limit N = oo. One of the models is 
devised to allow numerical results to be obtained for N as high as nearly 800 
for the largest longitudinal percolation correlation length (relaxation time for 
epidemic). The finite-N behavior of this correlation length is studied in detail, 
including scaling near the percolation transition, exponential divergence 
(with N) above the percolation transition, as well as other noncritical and 
critical-point properties. 
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1. I N T R O D U C T I O N  

The transfer  mat r ix  method ,  reviewed in refs. 1 and  2, has p roved  a power-  
ful tool  for s tudying  t h e r m o d y n a m i c  proper t ies  of two-d imens iona l  and  in 
few cases, three- and  h igher -d imens iona l  models.  Di rec ted  perco la t ion  and  
re la ted  cel lular  a u t o m a t a - t y p e  systems were s tudied by the transfer  mat r ix  
techniques mos t ly  in the cri t ical  region. (3-s) Recently,  however,  there has 

been interest  in g loba l  features of  the spectrum. (8'9) Specifically, for p > Pc, 
the behav io r  of  the cor re la t ion  length associa ted  with the leading spectral  
gap  has been found to yield useful informat ion ,  s imilar  to the ear l ier  studies 
of  the I s ing-mode l  cor re la t ions  (1~ for T <  T~. 
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Attempts to apply the transfer matrix method to study higher-dimen- 
sional systems have required large-scale computations and involved a com- 
bination of transfer matrix and Monte Carlo techniques. (1'2'14'~5) A class of 
one-dimensional models with long-range interactions also allows a transfer- 
matrix approach, (16 18) either analytical (16) or numerical. (~7"~8~ All these 
studies were limited to Ising models. Finally, in ref. 17, Ising models with 
infinite-range interactions within each cross section of the cylinder, 
LC/-Xx o0, were introduced. Such models have effectively no spatial 
geometry or dimensionality. Their "geometry" is defined instead by the 
number of spins N in the cross section, with, effectively, N oc L d- ~. The 
N x  oe system is thus treated by the transfer matrix method. The study of 
ref. 17 was focused on the analytical properties of the eigenvalues relevant 
to metastable states. 

In this work we consider infinite-connectivity (in the cross section) 
N x oo directed percolation models, following earlier studies of such models 
in the N =  oe limit (19~ in which, in fact, both the Ising and the directed per- 
colation critical behavior are mean-field. However, our study here is not 
restricted to the vicinity of the critical point. Our main objective is, in fact, 
to investigate the large-N asymptotic behavior of the leading longitudinal 
correlation length. 

In Section 2, we study the global features of the transfer matrix eigen- 
value spectrum for a standard infinite-connectivity percolation model. In 
Section 3, a new modified "single-step" model is defined which has global 
spectral features similar to those of the model of Section 2. However, as 
detailed in Section 4, this new model has advantages in numerical studies 
of the correlation length associated with the leading spectral gap. Numeri- 
cal results on the behavior of this correlation length below the percolation 
transition are presented in Section 5. Above the transition, the asymptotic 
degeneracy of eigenvalues, yielding a diverging length scale, is encountered. 
Detailed numerical studies of the correlation length in this regime are 
reported in Section 6. Section 7 is devoted to the scaling analysis in the 
critical region. Asymptotics of the scaling function, as well as some results 
on corrections to scaling, are obtained as well. 

2. I N F I N I T E - C O N N E C T I V I T Y  D I R E C T E D  P E R C O L A T I O N  

In addition to the usual percolation models of the propagation of 
"wetness" or connectivity, there are large classes of cellular automata, (5'6) 
reaction-kinetics models, (2~ and epidemic processes (21~ which belong to the 
universality class of directed percolation. We will use the "epidemic" 
nomenclature, and furthermore, we denote the directed axis as the time 
axis. Thus, the longitudinal correlation lengths can be identified as relaxa- 
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tion times, and the transfer matrix is effectively an evolution operator of 
the (discrete in time and space) stochastic dynamics of the epidemic 
process. 

In this section we consider the most straightforward definition of 
infinite-connectivity directed percolation (19) and describe some global 
features of the transfer matrix spectrum. For  detailed numerical studies, 
however, the model will be modified: see Section 3. Here we assume that a 
population of N individuals consists at time t of n(t) sick and N - n ( t )  
healthy members. During the time step At = 1, each sick individual passes 
the infection to the fraction p of all the population (including a possible 
"self-reinfection"). The multiplicity of the resulting infection (including the 
self-infection) does not matter: the only possible final state is "sick" or 
"healthy." In ref. 19, the disease associated with this epidemic was termed 
"percolitis." 

The model has an obvious infinite-range directed percolation inter- 
pretation: each one of the N sites at time t is connected by bonds to all the 
N sites at time t +  1. The bonds are open with probability p, and the 
"wetness" spreads along the open bonds from the n(t) wet sites at time t 
to the n(t+ 1) sites at time t +  1. In order to have a nontrivial model, the 
probability p must be of order 1/N. We take 

x 

P = -  ~ z . , ~  

N 

and consider the limit of large N, with x of order 1. 
The transition probability from the state n( t )=j  to the state 

n( t + 1) = k is given by 

P r o b ( j ~ k ) = ( N ) [ l _ ( l _ N ) j ] k ( l _ N ) J t N  k) (2.2) 

where the factors in (2.2) are obvious: the combinatorial coefficient 
corresponds to selection of which k members of the group are sick at t + 1. 
The factors [1 - (1 - p)J]  for each of those k members give the probability 
weight that at least one of the j sick (at t) members will indeed infect the 
selected "victim." Finally, the factors ( 1 -  p) ;  give the probability that the 
remaining N - k  group members will be healthy at time t + 1. 

The transfer matrix (evolution operator) W is defined by the matrix 
elements 

Wk.j= Prob( j  ~ k) (2.3) 

which corresponds to representing the probability distribution for having 
n infected members as a column vector with entries labeled by 
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n = 0, 1, 2, ..., N. It is clear that W is a nonsymmetric, stochastic matrix, 
N Y'.k=0 Wk, j =  1 for allj.  

The bulk ( N = ~ )  longitudinal length scales (for percolation) or 
relaxation times (for the epidemic picture) can be obtained by considering 
the mean-field evolution equation for this model (which is exact (19) for 
N =  ~ ,  i.e., the model is exactly mean-field in its bulk properties). 

While there are several ways to derive the mean-field evolution equa- 
tion, the simplest approach is to assume that at time t the most probable 
density is 

(n(t)> 
p( t )  =- (2.4) 

N 

where the angles denote averages, and to calculate p( t  + 1 ) via the maximal 
transition probability for n( t )  ~ n( t  + 1). This is appropriate only if fluctua- 
tions can be neglected. The equation 

in Wp(~+ 1)N,p(t)N --_ 0 (2.5) 
3p( t + 1) 

can be reduced, after some algebra, to 

ln(1-p)(1-R) 1-2p ( 1 \ 
p R  - 2 p ( 1 - p ) N  ~-0 ~ -~)  (2.6) 

where p - p ( t +  1), and 

R =  1 -  ~-e-Xp(~ (2.7) 

For  large N, the evolution equation is thus 

p( t + 1)=  1 - e - xp(t) (2.8) 

The evolution equation (2.8) has a critical point at x = 1. Indeed, for 
x ~< 1, any initial value 0 ~< p(0) ~< 1 iterates to zero. There is "no percola- 
tion" (no persistent epidemic) for x ~< 1. However, for x > 1, any nonzero 
initial density p (0 )>  0 iterates to the equilibrium value 15, where 15 is in 
(0, 1) and satisfies the equation 

t5 = 1 - e -xz (2.9) 

Let us first consider the case  x < 1. One can easily check that the 
convergence of p( t )  to zero can be expanded in an asymptotic series 

p ( t ) ~ z l x  t + z 2 x  2t + ""  (2.10) 
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where the coefficients zj are certain functions of the initial value p(0) and 
of x, but not of r Thus, the relaxation times ~m or the longitudinal correla- 
tion lengths, in the limit N = ~ ,  must correspond to x m' = exp( - t/~m), i.e., 
to 

1 
~m(N= oo)=  m l n x  (2.11) 

Numerical studies of the spectrum of the transfer matrix W for N ~< 50 
and 0 < x < 3 found no degenerate eigenvalues. Our results also suggest 
that as N increases, an increasing number of the largest eigenvalues are 
real. Note that for lower-dimensional, non-mean-field percolation 
problems (7'8) some eigenvalues are also complex pairs, but usually a large 
number of the largest eigenvalues are real, nondegenerate. The eigenvalues 
of the transfer matrix thus will be labeled A0> JAIl ~> ]A2[ ~> .... Note that 
A 0 - 1  here, due to the stochastic property of the transfer matrix. This 
corresponds (for all x) to the trivial value ~0 = o% corresponding, in turn, 
to a possible evolution with no sick group members, n(t)=-O, which is an 
"absorbing state" in the stochastic processes nomenclature. 

For  0 < x < 1, we found that the eigenvalues approach the limiting 
(large N) values suggested by the general relation 

At 1 
~i(x, N)  =-ln(Ao/Ai ) -  In Ai (2.12) 

Indeed ,  numerical evidence suggests that 

A m ( X < I , N ) ~ x  m as N - - * ~  (2.13) 

as illustrated in Fig. 1. 
Consider now the case x > 1. It turns out that there is a kind of a 

duality property in the percolation problem at hand. Let us define the 
quantities 

p(t)-/5 
i f=x (1  - /5 )  and /5(t) = - -  (2.14) 

1 - / 5  

One can show by a straightforward algebra that for 1 < x < oo the tilde- 
marked new quantities satisfy the same relations as the original x and p for 
0 < x < 1. Specifically, ff < 1, and (2.8) applies for/5, provided 2 is used in 
place of x. Thus, the equivalent of (2.13) would be the conclusion that the 
eigenvalues of the transfer matrix for x > 1 are powers of ft. 

However, numerical studies indicate an interesting "finite-size" feature: 
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Fig. 1. Solid curves: The seven largest nontrivial eigenvalues A1, . . . ,  A 7 for the infinite-range 
percolation model defined in Section 2. The values shown were obtained numerically for 
N = 30. Dotted curves: The theoretical limiting values: x, x 2, ..., x 7 for x < 1, and 2, 22, if3 for 
x > 1, see text. 

the eigenvalues actually approach  2 m in pairs; see Fig. 1. Thus,  A1 --+ 1 (and 
A o ~ 1 ); A2, 3 --~ x; A4, 5 --~ ~2; etc. The asymptot ic  degeneracy (exponential ly 
small - in-N gap)  of  the largest nontr ivial  eigenvalue A1 with A o is a general 
feature of  directed percolat ion models,  (9) shared with Ising (1~ and 
isotropic percolat ion models.  (22"23~ The degeneracy of the higher-order  
eigenvalues is p robab ly  special to the mean-field percolation.  

As indicated in the introduct ion,  the objective of our study is to 
investigate in detail the behavior  of the leading eigenvalue gap, and the 
associated correlat ion length ~lb = ~ "  Indeed,  this length is finite below the 
crit ical-point value x = 1; it diverges exponential ly for x above 1; and in 
fact it diverges algebraically, as do other  correlat ion lengths (all gaps close 
up)  at x = 1: see Fig. 1. However ,  the infinite-range percolat ion model  just  
studied allows only some qualitative conclusions to be made  f rom numeri-  
cal studies (such as Fig. 1). The  reason for numerical  difficulties lies in the 
fact that  the matr ix  elements (2.3) are strongly varying in magnitude.  Thus,  
roundoff  errors plague numerical  routines. On the other hand, it turns out 
(see Sections 5-7)  that  the s y s t e m  sizes N needed to observe various 
asympto t ic  behaviors  are quite large. Thus,  in the next section we will 
introduce a new mean-field infinite-connectivity directed percolat ion model  
which will be used in the numerical  studies repor ted  in Sections 4-7. 
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3. S I N G L E - S T E P  P E R C O L A T I O N  M O D E L  

To construct a model that will be easier to handle numerically, we will 
further discretize the time evolution. We define a model in which the time 
steps are much less than 1, and in which at most one disease transmission 
can occur during each time step. Let there be n sick members at time t. One 
group member  is randomly selected and termed "active." If this "active" 
member  is healthy, then nothing happens. However, if the "active" member  
is sick (probability n/N), then we assume that it can be cured at that time 
step, corresponding to n ~ n -  1, or that it can infect one additional group 
member  out of the initially N - n  healthy subgroup. The latter process 
corresponds to n ~ n + 1 and its probability is proportional to ( N -  n)/N. 
Both the rates of "cure" and "infection" must be of order l/N, due to the 
infinite connectivity in the cross section, to have the analogy with the 
model of Section 2. Instead of tabulating all possible outcomes with their 
probabilities, we will simply assign weight factors 1/N for cure and x/N for 
infection. (Various detailed selection rules may differ by terms of order 
1/N.) Thus, we take the transition probabilities in the form 

n 1 n 
Prob(n --+ n - 1 ) = - -  • - -  - N--- ~ (3.1) N N 7 

n N - n  x n ( N - n )  x 
= - - x - -  ( 3 . 2 )  P r o b ( n - + n + l )  ~ X N _  1 N N 2 ( N - 1 )  

Prob(n ~ n) -- 1 - Prob(n ~ n - 1) - Prob(n -~ n + 1) 

n I I +  ( U - n ) x . ]  
= 1 -  N - 1  J 

(3.3) 

No other transitions are allowed. 
The overall rate of, e.g., cure per sick member  must be of order 1 for 

time steps of order 1, while our rate in (3.1) is proportional to 1IN 2. In 
order to establish a correspondence with the model of Section 2, we must 
thus take the time steps here to be of order 1/N 2. Since we have already 
absorbed an arbitrary factor in the rates by fixing the cure rate ~:1, as 
opposed to the infection rate ~:x, we can put 

1 
At=-N2 (3.4) 

without any loss of generality. The model proposed here will then not 
be identical, but may be expected to be "universal," with the model of 
Section 2. 
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The transfer matrix T for this new "single-step" model is constructed 
from the transition probabilities (3.1)-(3.3) in an obvious manner. It is a 
tridiagonal, stochastic matrix. Let us denote its eigenvalues by 
2o> I;-1l/> 122L ~> .... Our numerical studies of the global features of the 
spectrum up to N = 50, with 0 < x < 4, indicate that an increasing (with N) 
number of the largest eigenvalues are real, and there are no degeneracies. 
Here, as before, we have 2o-= 1. However, a "global" comparison with the 
model of Section 2 is simpler if we consider the eigenvalues of the matrix 
W =  T N2, which corresponds to At = 1. Thus, we denote A m = )~ N 2  for the 
single-step model. 

The mean-field evolution equation for the single-step model is no 
longer of the recursive type (2.8). Indeed, the difference [p(t + A t ) - p ( t ) ]  
is of order 1/N 2. For large N, it will be replaced by At dp/dt. The f2-expan- 
sion technique (24) provides a systematic method to derive the mean-field 
evolution equation. Only the result is given here: 

t = P ( x - - l - - x p ) ,  where p - p ( t )  (3.5) 

The critical point is at x = 1. For x ~< 1, p(t) decays to zero for any 
initial value 0~p(0)~< 1. However, for x >  1 any nonzero initial value 
evolves (as t ~ oo) to the steady-state density 

x - - 1  
= - -  (3.6) 

x 

For x <  1, examination of the differential equation (3.5) immediately 
suggests that the relaxation times are [compare (2.11)] 

1 
~m(N= oo ) -  - -  (3.7) 

m(1 - x )  

Numerical studies indicate (see Fig. 2) that the eigenvalues A m converge to 
the limiting values [compare (2.13)], 

A m ( x < l , N ) ~ e x p [ - m ( 1 - x ) ]  as N ~ o o  (3.8) 

with a one-to-one correspondence. 
For x >  1 there is no longer an exact duality-type transformation. 

However, the difference 

~(t) = p(t) - ~ (3.9) 

satisfies the equation 

d/5 = fi(1 - x - x ~ )  (3.10) 
dt 
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Fig. 2. Solid curves: The seven largest nontrivial eigenvalues At, ..., A 7 for the single-step 
percolation model defined in Section 3. The values shown were obtained numerically for 
N= 50. Recall that Am are related to the actually calculated eigenvalues 2m via A m = 2 N2. 

Dotted curves: The theoretical limiting values: exp[m(x-1)],  m = 1, 2 ..... 7, for x < 1, and 
exp[m(1-x)],  m= 1, 2, 3, for x>  1; see text. 

This is quite similar to (3.5). Numer ica l  studies, such as Fig. 2, indicate 
that  here again we have the spec t rum-doubl ing  feature: the "bulk"  correla- 
t ion lengths (relaxat ion times) are 1 / [ m ( x - 1 ) ] ,  but  they correspond to 
pairs of the finite-N eigenvalues. Thus,  we have A I ~  1 (and A0-= l ) ;  
A2,3 --* exp(1 - x ) ;  A 4 ,  5 ~ exp[2(1  - x ) ] ;  etc. Figure 2 further illustrates the 
global  features of the leading eigenvalues. 

4. N U M E R I C A L  C A L C U L A T I O N  OF THE 
LEADING E I G E N V A L U E  

In order  to s tudy numerical ly the details of the finite-N behavior,  we 
consider the single-step model  defined in Section 3 and focus our  a t tent ion 
on the largest nontr ivial  eigenvalue 21. The  reasons for considering the 
leading eigenvalue are first due to the fact that  the largest correlat ion 
length has interesting propert ies  for x > 1 associated with the asymptot ic  
degeneracy with 2 o = 1. This feature is quite general and is also found in 
non-mean-f ie ld  percola t ion models. (9,22,23~ Second, an efficient numerical  
evaluat ion of this leading eigenvalue is possible. 

We define the reduced, N x N, transfer matr ix  U to be the same as T 
except that  it lacks the n = 0  row and column. Since the state n = 0  
is "absorb ing ,"  the matr ix  U thus has only the eigenvalues 21 . . . . .  • N  o An 
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interesting feature of the single-step model is that all its leading eigenvalues 
are quite close to 1, for all 0 < x < oo. Indeed, we argued in Section 3 that 
an unbounded number of the largest eigenvalues of W =  T N2, denoted 
by  Am, eventually approach limiting values in (0, 1] (for 0 < x <  0o). 

1IN 2 H o w e v e r ,  )-m are given by A m . Thus, the differences (1 - 2 m )  are at least 
as small as const/N 2. 

Our numerical procedure for estimating 21 was based on the iteration 
method. The estimate u(j) of the eigenvector of U belonging to ).1 was 
refined by calculating u(j+ 1) by solving the linear equation 

( l  - -  U ) / x ( j +  1) = /g ( j )  (4.1) 

Such methods are standard in numerical analysis, and details can be found 
in the literature; see, e.g., ref. 25. Specifically, we used the Crout reduction 
algorithm for the solution of the tridiagonal linear system (4.1). 

This numerical procedure is extremely efficient for the model at hand, 
due to the proximity of 21 to 1. For increasing N, the numerical con- 
vergence (at fixed x) is limited by the roundoff errors. The maximal value 
of N, denoted Nmax(X), reachable for x = 0.01, 0.02,..., 3.00, without having 
roundoff convergence problems (required accuracy in 21 was of order 
10-14), is given in Fig. 3. Note that the values in Fig. 3 do not vary 
smoothly. In fact, Nmax(X) is computer-dependent. We tried three different 
computers, and the best results were obtained on the SUN-3/280 work- 
station (with FPA board). All our calculations, and the values in Fig. 3, 
were based on the SUN-workstation runs, in the standard double-precision 
Fortran. As emphasized, the numerical procedure is extremely efficient, and 
CPU time was not at all a limiting factor. 

The basic quantity that we consider is 

At 1 
~ll(x, N) - ~1 ~ l~tL/L'n'~o'~l~ - N 2 In 21 (4.2) 

As suggested by the data in Fig. 3, for x approximately in the range 0.5-1.5, 
which includes the critical point at 1, we can obtain ~ll accurately for N 
values as high as 400, up to nearly 800 for some x values. For example, 
Nmax(X = 1) = 648. The convergence gets worse for very small x values, and 
also for x larger than 2. Fortunately, however, the x range for which large- 
N results are obtainable includes all the typical regimes: x < 1, x near 1, 
and x > 1. 
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Fig. 3. 
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The values of N reachable in numerical calculations for fixed x, denoted by Nma~(X); 
see Section 4. 

5. CORRELATION LENGTH BELOW THE 
PERCOLATION T R A N S I T I O N  

For fixed 0 < x < 1, we expect the correlation length to converge to its 
bulk limiting value; see (3.7) with m = 1. In this section we summarize the 
numerical evidence indicating that this convergence is in inverse powers 
of N, 

~ll(x, N) = ~ " B(x) + B(Z)(x)  
. . .  ( 5 . 1 )  

Little is known in the literature about "noncritical" finite-size correc- 
tions for infinite-range models. For the Ising and related lattice-gas models 
of X spins (particles) interacting with each other via ferromagnatic 
coupling of order l / X ,  it has been argued (11'26) that the corrections to the 
thermodynamic properties are indeed in powers of 1/X. We are not aware 
of any results for correlation properties. The 1IN correction here, and also 
the 1 / X  correction in the fully finite model case just mentioned, are 
naturally associated with the fact that changes in system properties when 
the size is changed from N to N +  O(1) will "follow the extensivity," i.e., 
they will be of relative magnitude N 1 (or X - l ) .  

The competing types of correction that one could think of are the 

Gaussian, order 1/,,fN (or 1 / ~ )  fluctuations. However, these only show 
up near criticality, (27) where the "extensivity" of various quantities loses its 
meaning due precisely to large fluctuations; see Section 7 below. 
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We considered the ~tt data for x = 0.4, 0.5, 0.6, 0.7, 0.8. The Nmax(X) 
values were 384, 435, 487, 544, 603, respectively. The Ndependence for 
each x was fit by using 10-, 20-, and 40-point least-squares fits to the two-, 
three-, four-, and five-term representation (5.1), with the points for the fit 
selected as No, N o - 1  ..... where N o took values from Nm~x down to 
Nma x -  100. Only the two- and three-term fits gave stable results. The 
higher-number-of-terms [in (5.1)] fits were less stable due to the roundoff 
noise in the data. The quality (consistency) of the stable fits was measured 
by the rms deviation. 

For  x=0 .4 ,  0.5, 0.6, the rms deviation was typically of order 10 -1~ 
which exceeded the consistency of similar fits assuming, e.g., a series in 
powers of 1/,~/N instead of 1IN. However, for x = 0.8 and, to a lesser 
extent, for x = 0.7, the linear-power fits were no longer clearly favored. We 
interpret this as an indication of the proximity of the critical region, which 
is very wide for this model (see Section 7 below). It is expected that the 
asymptotic behavior (5.1) will set in for larger N values, for x near 1. In 
fact, as x -~  1, the N values needed diverge as --~ (1 - x )  -2 (as follows from 
the results of the later sections), while our Nmax(X) are bounded near x = 1. 

The consistency of the form (5.1) was also confirmed by the exact 
fitting of the two- and three-term representation (5.1) to the values 
Ctl(x, No+  l - k ) ,  k =  1, 2 or k =  1, 2, 3, respectively. As with the least 
squares, higher-term fits were less stable due to roundoff noise. The 
stability was checked by considering the variation with N o . 

Fig. 4. 
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The es t imators  b(x, N) defined in (5.2), vs. l/N, for the x values 0.4 (the bo t t om set), 
0.5, 0.6, and  0.7 (the topmos t  set). 
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In order to illustrate the linearity in l/N, we present in Fig. 4 the 
estimated b(x, N), of B(x), vs. 1/N, where we define 

b(x, N)= N [ l~x-~ll(x , N) I (5.2) 

These quantities show a clear linear variation [due to the B (2) correction 
in (5.1)] for x=0.4 ,  0.5, 0.6, and, to a lesser extent, for x=0.7.  

6. A S Y M P T O T I C  DEGENERACY ABOVE THE 
PERCOLATION T R A N S I T I O N  

Asymptotic degeneracy of the two largest transfer matrix eigenvalues 
has long been a topic of fascination and study, dating at least as far back 
as Onsager's solution of the two-dimensional Ising model. (2s) Surprisingly, 
however, most of the results available to date (1~14'16'2s) have been for Ising 
models: asymptotic degeneracy has been linked to the buildup of the 
first-order phase transitions, to interfacial fluctuations, to hyperscaling 
properties on approach to criticality, etc. Results for n-vector models were 
reported in ref. 29. Recently, a study of the leading transfer matrix 
spectral gap was reported for the (1 + 1)-dimensional Reggeon field theory, 
universal with two-dimensional directed percolation. (9) 

The length scale ~Jt measures, for x > l ,  the persistence of the 
epidemic; ~it is very large above the percolation threshold. Indeed, for 
N =  0% the epidemic would persist indefinitely. However, for large N <  0% 
there is a small but finite probability of no infection propagating (no con- 
nectivity) due to the fact that the state n = 0 is absorbing. The probability 
of a "break" in connectivity must be a small number raised to the power 
N. Thus, we define 

~ll(X, N )  -.= e "Z(x'N)N (6.1) 

We expect X(x, N) to have a finite limiting value e(x), for each fixed 
x > 1. A general pattern of finite-N corrections can be proposed, (9) 

u(x) ln N A(x) A(Z)(x) 
X(x, N) = a(x) + U + - - ~ - +  ~ +  .-- (6.2) 

Here the terms with coefficients A, A (2), etc., are the usual "noncritical" 
corrections appropriate for the infinite-range models; see Section 5, e.g., 
(5.1). The possible logarithmic term has been typically associated with fluc- 
tuations of the transverse interfaces in the Ising case (1~ in which the 
function u(x) is in fact a universal constant calculable in the capillary-wave 
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theory. For lower-dimensional directed percolation there is numerical 
evidence (9~ for the logarithmic contribution. The function u(x) is no longer 
constant, and its connection with a detailed "fluctuation" picture of a break 
in the directed-percolation cluster connectivity in the cross section has not 
been clarified. 

Our numerical studies indicate that for the single-step infinite-range 
model, there is no such correction, i.e., 

u(x) = 0 (6.3) 

A posteriori, this could be expected due to the general suppression of fluc- 
tuations in the mean-field case. Our numerical studies consisted of the 
least-squares and exact fits similar to those described in Section 5. 
However, the clearest evidence for the absence of the logarithmic correction 
was obtained by plotting the data for x = 1.1, 1.2, 1.3 vs. 1IN and, on the 
same plot, vs. (ln N)/N. Note that the Nma x values were 604, 611, 534 for 
the three x values, respectively. The data for N >  300 show a clear cur- 
vature in the logarithmic case, while the 1IN plots look very straight. The 
quality of the least-squares fits to the form (6.1) without the logarithmic 
term was comparable to that obtained below x =  1, where we used (5.1). 

On approach to criticality, the function a(x) is characterized by a 
critical exponent, 

~(x) ~ const(x - 1 )" (6.4) 

The exponent # for the short-range directed models below their upper 
critical dimensionality is given by 

# = ( d -  1)v~ or # = ( d - 1 ) v •  (6.5) 

where the first relation is the generic form, applicable also in the Ising case 
(with v• replaced by v), based on certain hyperscaling properties; see ref. 9 
for details. The second relation is based on a modified scaling picture and 
is more consistent with the presently available numerical data for two- 
dimensional directed percolation. ~ In this case ~ is the leading irrelevant- 
variable correction-to-scaling exponent. 

However, in the mean-field limit of the dimensionality d approaching 
its upper critical value 5, we have ~ ~ 0, and also v• ~ �89 vii ~ 1; see, e.g., 
ref. 4. Since it is generally the case that the mean-field exponents can be 
obtained in such a limiting procedure, we expect to have 

# = 2  (6.6) 

In order to verify this prediction, we obtained data for S(x,  N) for 
x = 1.002, 1.004 ..... 1.300. These data were fitted by the two- and three-term 
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Fig. 5. The estimates of. the function or(x) defined in Section 6, plotted vs. ( x -  1)2. The 
results shown were obt~rineci by various two- and three-term least-square~ fits described in the 
text. 

least-squares fits, with u - 0  in (6.2). We used 20-point fits, i.e., the points 
No, N o - 1  ..... N o - 1 9 .  The resulting estimates for a(x) were plotted vs. 
(x - 1)2 for the choices No = Nmax, Nmax - 10 ..... N~a x - 60, for each of the 
x values considered; see Fig. 5. Thus, for each x in Fig. 5 we have two 
groups of seven points each. One group are the two-term fit estimates, and 
another the three-term fits. The spread within each group and that between 
the two groups illustrate the consistency and possible systematic errors in 
the estimates of a. In Fig. 5, the two-term fit results cluster lower than the 
three-term results, except for the smallest abscissa values, below ~0.015. 

The exponent value ~ = 2  corresponds to the quadratic dependence 
a(x) oc (x - 1 )2 only in the critical region, i.e., for x close to 1. However, the 
data in Fig. 5 are quite straight for x values up to about  1.25. Indeed, the 
critical region for this model is quite wide, as will be confirmed also by 
scaling studies near x =  1; see Section 7 below. The fact that for the 
smallest x values, below about 1.07, there are deviations from the straight- 
line behavior in Fig. 5 simply indicates that the N values were not large 
enough, a situation similar to the convergence problems discussed in 
Section 5. 

7. S C A L I N G  A N A L Y S I S  NEAR T H E  CRIT ICAL  P O I N T  

Analysis of the N dependence for fixed x fails for x --~ 1, as the results 
of Sections 5 and 6 indicate. This difficulty is expected. Indeed, near the 
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critical point the appropriate data analysis should be based on the finite- 
size (finite-N) scaling form of the correlation length. Below the upper criti- 
cal dimension, the scaling combination is [ ( p - P c ) / P c l  LI/~• where L is 
the transverse system size mentioned in the introduction. As the dimen- 
sionality approaches the upper critical value 5, we take the limits vz ~ 1/2 
and L ~: N I/(d- 1 ~  N1/4. Thus, the appropriate scaling combination in the 
mean-field theory may be expected to be ( x -  1) x/-N. 

The finite-N scaling form for the correlation length is 

~ll ~- xfl-N X[ ( x -  1)xfl-N? (7.1) 

The power of N outside the function X will be justified when we consider 
the emergence of the bulk limit for x < 1; see below. The "scaling" inter- 
pretation of (7.1) is that the limits x ~ l  and N ~  are taken 
simultaneously, but at such rates that the combination of variables 

s - ( x -  1 ) x / N  (7.2) 

remains of order 1. 
We attempted numerical data collapse according to (7.1). For each of 

the x values 0.850, 0.851,..., 1.149, 1.150, we calculated r for 
N =  Nmax(X), Nmax(X) - 20, ..., Nmax(X ) - 200. The total of 3311 values thus 

obtained were plotted as ~ll/x/-N vs. s. The resulting data collapse was quite 
accurate for - 3 < s < 3. The central part of this plot, estimating the scaling 
function X(s), is shown in Fig. 6. The quality of the data collapse for the 

l 
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/ 
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/ 
/ 

x ( 8 )  

o _~ , -1 ' 0 '1 ' 

Fig. 6. 

8 

The scaling data collapse. The data shown estimate the scaling function X(s) defined 
in Section 7; see (7.1). 
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N values reachable in our calculations is quite sufficient to confirm the 
scaling form (7.1). 

For larger values of Isl, it is interesting to examine the onset of the 
"bulk limit," i.e., the crossover to the fixed-x, N ~ ~ pattern of behavior. 
Let us first consider the case of large, negative s. The correct bulk limit is 
then obtained if we assume that 

1 
X ( s ) ~ - -  for s--* - o o  (7.3) 

S 

Indeed, the bulk result e l l (x< 1, N =  ~ ) =  1 / ( l - x )  then follows from 
(7.1). Numerical verification of (7.3) is presented in Fig. 7. The data here 
are the same as in Fig. 6, but instead of the estimates of X(s), we plotted 
the values of -sX(s). The latter function should approach 1 as s ~ - m ,  
as is indeed clearly confirmed by the data (Fig. 7). 

Consider next the limit of large, positive s. In order to reproduce the 
bulk-limiting behavior suggested by (6.1)-(6.2) [with u(x.)= 0], one has to 
assume the form 

eCOnSt s 2 

X(s) oc (7.4) 
S 

as s ~ + ~ .  In order to check for this behavior, we used the same data as 
in calculations for Fig. 6. However, we plotted the function ln[sX(s)] vs. s 2 
in Fig. 8. The expected linear behavior sets in for s > 2 (see Fig. 8). 

-sX(s) 

1 

0.8 

0.6 

0.4 

0.2 

03  ' -2 -'1 ' 0 

Fig. 7. Numer ica l  es t imates  of -sX(s) for negat ive  s. The theore t i ca l  a sympto t i c  l imit  as 
s ~  - o o  is 1. 
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Fig. 8. 
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Numerical estimates of ln[sX(s)], plotted vs. s 2, for positive s. The theoretical 
asymptotic behavior for large s a must  be linear. 

Finally, we analyzed the correction-to-scaling pattern at s = 0, i.e., at 
the critical point x = 1. Generally, the short-range mean-field models (high- 
dimensional models) and the infinite-range models are not necessarily 
"universal" at the level of corrections to scaling. This effect is due to the 
possibility of fluctuations away from the uniform order parameter in the 
short-range case as opposed to the infinite-range models. Thus, the infinite- 
range models have only a subset of correction contributions due to the 
uniform, Gaussian fluctuations. These are naturally of relative magnitude 
1/x/-N in the critical region. (12'27) 

While the full finite-N scaling-with-corrections description can be 
formulated, its precise verification would be difficult with the available 
data. Thus, we only consider the behavior at x = x c .  Relation (7.1) is 
replaced by the series 

X(3) 
( (x  = 1, N) = x / N  X(0) + X (2) + - -  + ... (7.5) 

This representation was checked by the least-squares and exact fits similar 
to those described in Section 5. Our numerical estimates of the leading and 
the first correction amplitudes are 

X(O) = 0.9000 + 0.0003 and X ~2) = 0.70 + 0.03 (7.6) 

In summary, our results reported in this work provide a qualitative 
picture of the global eigenvalue spectrum of the transfer matrix for the 
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inf ini te-range perco la t ion  models.  De ta i l ed  numer ica l  studies yield new 
in format ion  on the pa t t e rn  of the f ini te-N behav io r  of noncr i t ica l  p rope r -  

ties, on the a sympto t i c  degeneracy  of  the leading spectral  gap,  and  on the 
scaling behav io r  near  crit icality.  Whi le  some of  the proper t ies  noted,  such 
as the doub l ing  of the subleading  spec t rum above  the pe rco la t ion  t ransi-  
t ion, are p r o b a b l y  special to infini te-range models ,  o ther  results, especial ly 
those on scaling and  asympto t i c  degeneracy,  will be of use as the mean-  
field l imits  of  the genera l -d imens ional i ty ,  shor t - range  lat t ice models.  
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